Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 188: 333-342, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389381

RESUMO

Understanding olfaction process at a microscopic or molecular level needs more elucidation of the multiple stages involved in the olfaction mechanism. A worth full elucidation and a better understanding of this molecular mechanism, a necessary preamble should be achieved. The content of this work is a preamble for that. A study of the mouse and human olfactory receptors activation in response to two nitro musks stimuli, which are the musk xylol and the musk ketone, are considered here, first, for their wide expanded use in perfumery, but also to show some particular aspects of this process in the case of these two stimuli, which could help to deduce more details and more general aspects in the global olfactory mechanism. A statistical physics modeling using the monolayer model with two independent types of receptor binding sites of the response of the mouse olfactory receptor MOR215-1 and the human olfactory receptor OR5AN1, which are identified as specifically responding to musk compounds, is used to characterize the interaction between the two nitro musk molecules, the mouse and the human olfactory receptors and to determine the olfactory band of these two odorants through the determination of the molar adsorption energies and the adsorption energy distributions. The physico-chemical model parameters can be used for the steric characterization via the calculation of the receptor site size distributions. The docking computation between these two nitro musks and the human olfactory receptor OR5AN1 is performed demonstrating a large similarity in receptor-ligand detection process. Thus, docking finding results prove that the calculated binding affinities were belonging to the spectrum of adsorption energies.


Assuntos
Adsorção/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Receptores Odorantes/genética , Olfato/genética , Animais , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Camundongos , Modelos Químicos , Simulação de Acoplamento Molecular , Nitrocompostos/química , Nitrocompostos/farmacologia , Odorantes/análise , Física , Receptores Odorantes/química , Olfato/efeitos dos fármacos , Xilenos/química , Xilenos/farmacologia
2.
J Mol Model ; 27(1): 5, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389146

RESUMO

The synthesis of guar gum sulfates by a complex of sulfur trioxide with 1,4-dioxane was studied. The influence of temperature, process duration, and the volume of chlorosulfonic acid on the degree of substitution of guar gum sulfates was studied. The sulfation process has been optimized using the Box-Behnken design. It was shown that the optimal conditions for sulfation of guar gum with a complex of sulfur trioxide-1.4-dioxane: temperature 60 °C, duration 2.9 h, and a volume of chlorosulfonic acid of 3.1 ml. Sulfate groups embedding into the structure of guar gum was confirmed by elemental analysis and FTIR. The initial and sulfated guar gum were also characterized by methods: X-ray diffraction, scanning electron microscopy, and gel permeation chromatography. Using X-ray diffraction, it was shown that amorphization of guar gum occurs during sulfation. Using scanning electron microscopy, it was shown that the morphology of guar gum changes in the process of sulfation. Using gel permeation chromatography, it was shown in the process of guar gum sulfation by a complex of sulfur trioxide with 1,4-dioxane, the molecular weight decreases from 600 to 176 kDa. The geometric parameters of all complexes were carried out by using the DFT/B3PW91 method with a 6-31 + G (d,p) basis set. These structures are optimized to predict the important properties of a theme. MEP with contour map has been performed to obtain the electronic properties. Frontier molecular orbital HOMO-LUMO orbital diagram has been obtained for different energy levels and their band gap energies have been computed.

3.
Heliyon ; 6(8): e04640, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32802981

RESUMO

In the present work, the succinic acid (SA), L-pyroglutamic acid (L-PGA), N-phenyl-thioacetamide (N-NPTA), 2-amino-5-chloropyridine hydrogen succinate (ACPS), epigallocatechine Gallate (EGCG) or KDH and, selenomethionine (SeM) compounds have been proposed as potential antiviral candidates to treatment of COVID-19 based on B3LYP/6-311++G∗∗ calculations and molecular docking. Solvation energies, stabilization energies, topological properties have been evaluated as function of acceptors and donors groups present in their structures. ACPS presents the higher reactivity in solution possibly because has the higher nucleophilicity and elecrophilicity indexes while KDH evidence the higher solvation energy probably due to the higher quantity of donors and acceptors groups. NBO studies show that KDH is the most stable in solution. Mapped MEP surfaces have evidenced stronger nucleophilic and electrophilic sites in ACPS, in agreement with the three C=O and two N-H and O-H groups present in this species while KDH has only a C=O group but a total of 19 acceptors and donors groups. From the above studies for six species we can propose that the better potential antiviral candidate to treatment of COVID-19 is ACPS and then, KDH. For a better prediction of the antiviral and anti-inflammatory properties of the proposed compounds, molecular docking calculations were performed by using four structures of COVID-19. Docking results were discussed basing on binding affinities and the interaction types among ligands and different amino acid residues, indicating the powerful ability of KDH and then ACPS ligands on front of the novel coronavirus disease especially for the first and the fourth species (6LU7, 7BTF).

4.
Comput Biol Chem ; 88: 107348, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32739798

RESUMO

In this paper, theoretical study on molecular geometry, vibrational, pharmaceutical and electronic properties of the monomeric and dimeric structures of 1-benzothiophene-2-carboxylic acid (2BT) were carried out using B3LYP hybrid functional with 6-311++G(d,p) as basis set. The structural study show that the stability of 2BT crystalline structure arising from O-H…O, C-H…O as well as S-H…O hydrogen bonding interactions. Vibrational analysis, for monomer and dimer species, show a good compatibility between experimental and theoretical frequencies. Then, the 1H and 13C NMR chemical shifts were calculated using Gauge Independent Atomic Orbital (GIAO) technical. In addition, the UV-Vis spectrum was simulated in gas phase and in water throughout TD-DFT calculation. The electronic transitions were identified based on HOM-LUMO energies. However, donor-acceptor interactions and charge delocalization has been studied via natural bond orbital (NBO). The nucleophilic and electrophilic site localization is identified by molecular electrostatic potential. Hirshfeld surface analysis has been discussed based on color code demonstrating the various non covalent interactions. Besides, molecular docking analysis was reported to evince the pharmaceutical properties of the studied molecule.


Assuntos
Anti-Inflamatórios não Esteroides/química , Teoria da Densidade Funcional , Desenho de Fármacos , Simulação de Acoplamento Molecular , Tiofenos/síntese química , Anti-Inflamatórios não Esteroides/síntese química , Tiofenos/química
5.
Comput Biol Chem ; 87: 107311, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32604029

RESUMO

Structural optimization, molecular docking analysis, electronic and vibrational properties have been investigated for the 1-benzofuran-2-carboxylic acid (2BF) and 1-benzofuran-3-carboxylic acid (3BF) using DFT/B3LYP/6-311++G(d,p) level of theory. The theoretical parameters have a very good consistency with the experimental ones. The weak intermolecular interactions were analyzed by different tool such as: Hirshfeld surfaces, topological analysis and natural bond orbital studies. The nonlinear optical properties have been investigated. Molecular electrostatic potential and frontier molecular orbitals (FMOs) analysis have been carried out to understand the reactivity of the molecule. In addition, TD-DFT calculation is initiated to simulate the UV-vis absorption spectrum and to determine several important electronic properties like HOMO-LUMO gap energy and electronic transitions. The complete vibrational assignments and the force constants were reported for monomer and dimers of both acids. The biological activities of the tow acids have been studied via molecular docking analysis. The later calculations prove that the studied acids have an inhibitor effect against cancer and microbial diseases.

6.
Comput Biol Chem ; 86: 107268, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32380384

RESUMO

The present work undertakes the structural and electronic properties of 3-thiophene acetic acid (abbreviated as 3-TAA) monomer and dimer. DFT calculations were performed using B3LYP functional in combination with the aug-cc-pVTZ basis set. The optimized structural parameters were found to be in a good agreement with experimental molecular geometry. The stability of the crystal packing was ensured by OH⋯O, C-H⋯O and CH⋯S intermolecular interactions. All the Non covalent interactions were deeply studied in terms of their topological parameters, Hirshfeld surface (HS) analysis and reduced density gradient (RDG) analysis. The electronic properties of the investigated compound have been performed using time dependent density functional theory (TD-DFT) and discussed through its correspondant HOMO, LUMO and excitation energy values. Likewise, the reactivity of 3-TAA was discussed in terms of several thermodynamic parameters. In addition, the molecular electrostatic potential (MEP) surface has been performed and discussed in terms of color distribution. In addition, the natural bond orbital (NBO) analysis was used to investigate the electronic charge transfer into the molecule. Harmine, Clorgyline, Isatin, zonisamide and our title compound including are known with their competitive inhibitory activity on Human monoamine oxidase, commonly named MAO A and B. This enzyme is a critical enzyme in the degradative deamination of biogenic amines throughout the body. Thus, molecular docking behaviors of 3-TAA are computed and compared to the results found for Harmine, Clorgyline, Isatin, zonisamide ligands.


Assuntos
Acetatos/química , Inibidores da Monoaminoxidase/química , Tiofenos/química , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...